Alternative Design Exploration using K - Nearest Neighbor Technique and Semantic Web Technology in an Energy Simulation Tool

نویسنده

  • Iman Paryudi
چکیده

An energy simulation tool is a tool that is used to calculate energy demand of a building. The existing energy simulation tools carry out alternative design exploration using optimization method. This method works by varying its parameters to obtain better energy performance. The method needs to calculate energy performance every time each parameter is changed. This practice causes the method is slow. Therefore, new techniques to carry out alternative design exploration are used, they are: K-Nearest Neighbor Technique and Semantic Web Technology. The advantage of the above techniques is that they do not need to calculate energy performance for any parameter combination. Instead they will select parameter combinations that will give better design. Experiment shows that, in an alternative design exploration, Semantic Web performs better than KNN in terms of speed. Another advantage of Semantic Web is that there is no need to preprocess data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Comparison between Naïve Bayes, Decision Tree and k-Nearest Neighbor in Searching Alternative Design in an Energy Simulation Tool

Energy simulation tool is a tool to simulate energy use by a building prior to the erection of the building. Commonly it has a feature providing alternative designs that are better than the user’s design. In this paper, we propose a novel method in searching alternative design that is by using classification method. The classifiers we use are Naïve Bayes, Decision Tree, and k-Nearest Neighbor. ...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

ارائه مدلی غیرپارامتریک با استفاده از تکنیک k- نزدیک‌ترین همسایه در برآورد جرم مخصوص ظاهری خاک

Soil bulk density measurements are often required as an input parameter for models that predict soil processes. Nonparametric approaches are being used in various fields to estimate continuous variables. One type of the nonparametric lazy learning algorithms, a k-nearest neighbor (k-NN) algorithm was introduced and tested to estimate soil bulk density from other soil properties, including soil ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013